Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068850

RESUMO

Inflammatory bowel disease (IBD) is a chronic disease associated with overactive inflammation and gut dysbiosis. Owing to the beneficial effects of bifidobacteria on IBD treatment, this study aimed to investigate the anti-inflammation effects of an exopolysaccharide (EPS)-producing strain Bifidobacterium pseudocatenulatum Bi-OTA128 through a dextran sulfate sodium (DSS)-induced colitis mice model. B. pseudocatenulatum treatment improved DSS-induced colitis symptoms and maintained intestinal barrier integrity by up-regulating MUC2 and tight junctions' expression. The oxidative stress was reduced after B. pseudocatenulatum treatment by increasing the antioxidant enzymes of SOD, CAT, and GSH-Px in colon tissues. Moreover, the overactive inflammatory responses were also inhibited by decreasing the pro-inflammatory cytokines of TNF-α, IL-1ß, and IL-6, but increasing the anti-inflammatory cytokine of IL-10. The EPS-producing strain Bi-OTA128 showed better effects than that of a non-EPS-producing stain BLYR01-7 in modulating DSS-induced gut dysbiosis. The Bi-OTA128 treatment increased the relative abundance of beneficial bacteria Bifidobacterium and decreased the maleficent bacteria Escherichia-Shigella, Enterorhabuds, Enterobacter, and Osillibacter associated with intestinal inflammation. Notably, the genera Clostridium sensu stricto were only enriched in Bi-OTA128-treated mice, which could degrade polysaccharides to produce acetic acid and butyrate in the gut. This finding demonstrated a cross-feeding effect induced by the EPS-producing strain in gut microbiota. Collectively, these results highlighted the anti-inflammatory effects of the EPS-producing strain B. pseudocatenulatum Bi-OTA128 on DSS-induced colitis, which could be used as a candidate probiotic supporting recovery from ongoing colitis.


Assuntos
Bifidobacterium pseudocatenulatum , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Bifidobacterium pseudocatenulatum/metabolismo , Sulfato de Dextrana/toxicidade , Disbiose/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Bifidobacterium/metabolismo , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Appl Environ Microbiol ; 88(20): e0129922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36200766

RESUMO

Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including Bifidobacterium. While several Bifidobacterium species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico analyses revealed that only the genomes of these xylan-fermenting (xylan+) strains contained an extracellular GH10 endo-ß-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan+ strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains with a xylan+ phenotype can persist with xylan supplementation. These results indicate that xylan+ B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. IMPORTANCE The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.


Assuntos
Bifidobacterium pseudocatenulatum , Xilanos , Humanos , Xilanos/metabolismo , Bifidobacterium pseudocatenulatum/metabolismo , Xilose/metabolismo , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Bifidobacterium/metabolismo , Hidrólise , Fibras na Dieta/metabolismo
3.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889370

RESUMO

Expression and purification of ß-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two ß-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two ß-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-ß-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s-1 and 0.5 ± 0.02 s-1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported ß-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.


Assuntos
Bifidobacterium longum , Bifidobacterium pseudocatenulatum , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Bifidobacterium pseudocatenulatum/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Cinética , Lactose/metabolismo , Temperatura , beta-Galactosidase/química
4.
Nutrients ; 14(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684146

RESUMO

Eighty-eight Bifidobacterium pseudocatenulatum strains, which were isolated from human, chicken and cow fecal samples from different niches of China, were compared genomically in this study to evaluate their diversity. It was found that B. pseudocatenulatum displayed a closed pan-genome, including abundant glycoside hydrolase families of the carbohydrate active enzyme (CAZy). A total of 30 kinds of glycoside hydrolases (GHs), 14 kinds of glycosyl transferases (GTs), 13 kinds of carbohydrate-binding modules (CBMs), 6 kinds of carbohydrate-esterases (CEs), and 2 kinds of auxiliary activities (AAs) gene families were identified across the genomes of the 88 B. pseudocatenulatum strains. Specifically, this showed that significant differences were also present in the number of 10 carbohydrate-active enzyme gene families (GT51, GH13_32, GH26, GH42, GH121, GH3, AA3, CBM46, CE2, and CE6) among the strains derived from the hosts of different age groups, particularly between strains from infants and those from other human age groups. Twelve different individuals of B. pseudocatenulatum from four main clusters were selected for further study to reveal the genetic diversity of carbohydrate metabolism-related genes within the same phylogenetics. The animal experiment showed that 3 weeks of oral administration and 1 week after cessation of administration of these strains did not markedly alter the serum routine inflammatory indicators in mice. Furthermore, the administration of these strains did not significantly cause adverse changes in the gut microbiota, as indicated by the α- and ß-diversity indexes, relative to the control group (normal diet). Beyond that, FAHBZ9L5 significantly increased the abundance of B. pseudocatenulatum after 3 weeks and significantly increased the abundance of acetic acid and butyric acid in the host's intestinal tract 3 and 4 weeks after the first administration, respectively, compared with the control group. Corresponding to this, comparative genomic analyses of 12 B. pseudocatenulatum suggest that FAHBZ9L5-specific genes were rich in ABC transporters and carbohydrate esterase. Combining the results of comparative genomics analyses and animal experiment, it is suggested that the strains containing certain gene clusters contribute to another competitive growth advantage of B. pseudocatenulatum, which facilitates its intestinal carbohydrate metabolism in a host.


Assuntos
Bifidobacterium pseudocatenulatum , Microbioma Gastrointestinal , Animais , Bifidobacterium pseudocatenulatum/metabolismo , Metabolismo dos Carboidratos/genética , Carboidratos , Bovinos , Feminino , Microbioma Gastrointestinal/genética , Genômica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Camundongos
5.
Glycobiology ; 32(6): 540-549, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138388

RESUMO

Bifidobacterium pseudocatenulatum grows well in the early stages of cultivation in medium containing sucrose (Suc), whereas its growth in medium containing the analogue disaccharide N-acetylsucrosamine (SucNAc) tends to exhibit a considerable delay. To elucidate the cause of this phenomenon, we investigated the proliferation pattern of B. pseudocatenulatum in medium containing D-glucose (Glc) and SucNAc and identified the enzyme that degrades this disaccharide. We found that B. pseudocatenulatum initially proliferates by assimilating Glc, with subsequent growth based on SucNAc assimilation depending on production of the ß-fructofuranosidase, which can hydrolyze SucNAc, after Glc is completely consumed. Thus, B. pseudocatenulatum exhibited a diauxic growth pattern in medium containing Glc and SucNAc. In contrast, when cultured in medium containing Glc and Suc, B. pseudocatenulatum initially grew by degrading Suc via the phosphorolysis activity of Suc phosphorylase, which did not react to SucNAc. These observations indicate that B. pseudocatenulatum proliferates by assimilating Suc and SucNAc via different pathways. The ß-fructofuranosidase of B. pseudocatenulatum exhibited higher hydrolytic activity against several naturally occurring Suc-based tri- or tetrasaccharides than against Suc, suggesting that this enzyme actively catabolizes oligosaccharides other than Suc.


Assuntos
Bifidobacterium pseudocatenulatum , Bifidobacterium pseudocatenulatum/metabolismo , Dissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo
6.
Appl Environ Microbiol ; 88(2): e0170721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757822

RESUMO

Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.


Assuntos
Bifidobacterium pseudocatenulatum , Leite Humano , Bifidobacterium pseudocatenulatum/metabolismo , Feminino , Humanos , Hidrolases/metabolismo , Lactente , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
7.
Microbiome ; 9(1): 227, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34802456

RESUMO

BACKGROUND: Low dietary fiber intake has been shown to disturb the gut microbiome community, damage the mucus barrier, and promote pathogen susceptibility. However, little is known about the temporal response of the gut microbiome to dietary fiber deprivation and the recovery induced by dietary fiber inclusion in pigs. OBJECTIVE: In the present study, temporal responses of ileal and fecal microbiota to dietary fiber deprivation were profiled using an ileum cannulated growing pig model. In addition, the potential of dietary-resistant starch, ß-glucan, and xylan to alleviate gut dysbiosis throughout the gastrointestinal tract, as well as its possible mechanisms were investigated. METHODS: Six cannulated growing pigs were fed a fiber deprivation diet for 35 days. Ileal digesta and feces were collected at days 0, 7, 21, and 35 for 16S rRNA sequencing and short-chain fatty acid (SCFA) determination. Another twenty-four healthy growing pigs were assigned to one of four dietary treatments including (1) fiber-free diet, (2) resistant starch diet, (3) ß-glucan diet, and (4) xylan diet. These twenty-four pigs were fed a corresponding diet for 35 days and slaughtered. Gut microbiome and SCFA concentration were profiled along the gastrointestinal tract. RESULTS: Dietary fiber deprivation-induced consistent microbiota extinction, mainly Bifidobacterium and Lactobacillus, and decreased SCFA concentrations in both ileum and feces. The community structure partially recovered at day 35 compared with baseline while SCFA concentrations remained low. Xylan supplementation alleviated gut dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum within the large intestine. SCFA concentration increased significantly after xylan supplementation and exhibited a positive association with B. pseudocatenulatum abundance. An elevated abundance of xylan degradation-related enzyme genes was also observed in the gut microbiome after xylan supplementation. In vitro growth assay further verified the xylan utilization capacity of B. pseudocatenulatum. CONCLUSIONS: Dietary fiber deprivation could induce probiotic extinction and loss of the SCFA production while potential pathogen was promoted. Xylan intervention could partially restore dietary fiber deprivation-induced gut dysbiosis through selectively promoting B. pseudocatenulatum and therefore normalizing the gut environment. These findings collectively provide evidence that dietary fiber-driven microbiota metabolism bridges the interplay between microbiome and gut health. Video abstract.


Assuntos
Bifidobacterium pseudocatenulatum , Disbiose , Animais , Bifidobacterium pseudocatenulatum/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Suínos , Xilanos
8.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33036985

RESUMO

Arabinoxylan hydrolysates (AXH) are the hydrolyzed products of the major components of the dietary fiber arabinoxylan. AXH include diverse oligosaccharides varying in xylose polymerization and side residue modifications with arabinose at the O-2 and/or O-3 position of the xylose unit. Previous studies have reported that AXH exhibit prebiotic properties on gut bifidobacteria; moreover, several adult-associated bifidobacterial species (e.g., Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum) are known to utilize AXH. In this study, we tried to elucidate the molecular mechanisms of AXH utilization by Bifidobacterium pseudocatenulatum, which is a common bifidobacterial species found in adult feces. We performed transcriptomic analysis of B. pseudocatenulatum YIT 4072T, which identified three upregulated gene clusters during AXH utilization. The gene clusters encoded three sets of ATP-binding cassette (ABC) transporters and five enzymes belonging to glycoside hydrolase family 43 (GH43). By characterizing the recombinant proteins, we found that three solute-binding proteins of ABC transporters showed either broad or narrow specificity, two arabinofuranosidases hydrolyzed either single- or double-decorated arabinoxylooligosaccharides, and three xylosidases exhibited functionally identical activity. These data collectively suggest that the transporters and glycoside hydrolases, encoded in the three gene clusters, work together to utilize AXH of different sizes and with different side residue modifications. Thus, our study sheds light on the overall picture of how these proteins collaborate for the utilization of AXH in B. pseudocatenulatum and may explain the predominance of this symbiont species in the adult human gut.IMPORTANCE Bifidobacteria commonly reside in the human intestine and possess abundant genes involved in carbohydrate utilization. Arabinoxylan hydrolysates (AXH) are hydrolyzed products of arabinoxylan, one of the most abundant dietary fibers, and they include xylooligosaccharides and those decorated with arabinofuranosyl residues. The molecular mechanism by which B. pseudocatenulatum, a common bifidobacterial species found in adult feces, utilizes structurally and compositionally variable AXH has yet to be extensively investigated. In this study, we identified three gene clusters (encoding five GH43 enzymes and three solute-binding proteins of ABC transporters) that were upregulated in B. pseudocatenulatum YIT 4072T during AXH utilization. By investigating their substrate specificities, we revealed how these proteins are involved in the uptake and degradation of AXH. These molecular insights may provide a better understanding of how resident bifidobacteria colonize the colon.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium pseudocatenulatum/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo
9.
mBio ; 8(1)2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196965

RESUMO

The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95) of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups), including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized.IMPORTANCE The manipulation of the gut microbiota via dietary approaches is a promising option for improving human health. Our findings showed differential responses of multiple B. pseudocatenulatum strains isolated from the same habitat to the dietary intervention, as well as strain-specific correlations with bioclinical parameters of the host. The comparative genomics revealed a genome-level microdiversity of related functional genes, which may have contributed to these differences. These results highlight the necessity of understanding strain-level differences if precise manipulation of gut microbiota through dietary approaches is to be realized.


Assuntos
Bifidobacterium pseudocatenulatum/genética , Carboidratos da Dieta , Variação Genética , Genoma Bacteriano , Bifidobacterium pseudocatenulatum/classificação , Bifidobacterium pseudocatenulatum/isolamento & purificação , Bifidobacterium pseudocatenulatum/metabolismo , Peso Corporal , Criança , Sacarose na Dieta/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Obesidade/microbiologia , Polissacarídeos , Síndrome de Prader-Willi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...